

A Directional Dogbone Flextensional Sonar Transducer

COMSOL Conference 2010 Boston, MA

7-9 Oct 2010

Stephen C. Butler Naval Undersea Warfare Center Newport, RI 02841 USA

Introduction

- Sonar transducers are electro-acoustic devices used for transmitting and receiving acoustic energy for the purpose of detection and location of underwater objects.
- In order to transmit energy in one direction, sonar Class IV flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The directionality (front-to-back pressure ratio) in practice is a modest 6 dB due to diffraction.
- A new class of transducer the Directional "dogbone" flextensional transducers which generates cardioid beams could replace these dual line array. This will reduce weight, cost and increase front-to-back ratio greater than 20 dB.
- COMSOL with Acoustics Module is used to predict in-water electroacoustic performance and is compared with experimental data.
 COMSOL is then used to calculate the complex drive coefficients used to drive the transducer into the directional mode.

Sonar uses Transmitted and Reflected Sound Waves to Locate Underwater Objects

Two Line Arrays and Planar Arrays of Projector Elements that are Several Wavelengths Long and Spaced a 1/4 Wavelength Apart.

a) Two Line Arrays

b) Two Planar Arrays

Modeled Beam Patterns for Two sources spaced a 1/4 Research - Redecant Research - Redcant Research - Research - Redcant Research - Redcant Research -

Synthesis of a Directional Flextensional

An other way to generate a directional cardioid Beam

Two Line Arrays of Projector Elements that are Several Wavelengths Long and Spaced a 1/4 Wavelength Apart Replaced by One Line Array of Directional Dogbone

a) Conventional two lines F/B < 15 dB b) Directional one line (Replacement) F/B > 20 dB

Class IV Flextensional Transducer and Class VII "Dogbone" Flextensional Transducer

Model Verification Procedure

- Validate COMSOL Model with Measured Results of a standard Omni Mode Dogbone Flextensional Sonar Transducer
- Then predict the directional operation mode

Class VII "Dogbone" Flextensional Sonar Transducer, a) Shell and Ceramic Stack and b) Encapsulated

a) Shell and Ceramic Stack

b) Encapsulated

COMSOL Stack a) Subdomain Settings and b) Boundary Settings for Piezo Plane Strain (smppn) application and c) Electric Potential and Field Arrows results

ŝ	30 (Insulator)
	29 (PZT8U)
	28 (PZT8D)
	27 (PZT8U)
1	26 (PZT8D)
1	25 (PZT8U)
	24 (PZT8D)
.s.	23 (PZT8U)
2	22 (PZT8D)
	21 (PZT8U)
	20 (PZT8D)
	19 (PZT8U)
	18 (PZT8D)
0	17 (PZT8U)
11	16 (PZT8D)
1	15 (PZT8U)
50	14 (PZT8D)
0	13 (PZT8U)
Ĩ.	12 (PZT8D)
1	11 (PZT8U)
	10 (PZT8D)
	9 (PZT8U)
1	8 (PZT8D)
1	7 (PZT8U)
	6 (PZT8D)
×.	5 (PZT8U)
8	4 (PZT8D)
	3 (PZT8U)
8	2 (PZT8D)
-	1 (Insulator)

V

12222-22	61 (Free)	_
Voa (mee)	60 (Ground)	791 (Free)
R7 (Free)	58 (+V)	700 (Free)
AD (Hee)	56 (Ground)	Reg (Free)
Aps (Free)	54 (+V)	768 (Free)
PI (mee)	52 (Ground)	787 (Free)
(Free)	50 (+V)	A6 (Free)
(mee)	48 (Ground)	785 (Free)
(Free)	46 (+V)	A4 (Free)
(Hee)	44 (Ground)	AG3 (Free)
(Free)	42 (+V)	All2 (Free)
Ka (mee)	40 (Ground)	al (Free)
AV (Hree)	38 (+V)	700 (Free)
As (Hee)	36 (Ground)	79 (Free)
As (mee)	34 (+V)	Na (Free)
AT (mee)	32 (Ground)	TV/ (Free)
(ue)	30 (+V)	No (Free)
Kr (mee)	28 (Ground)	The (Free)
(Hee)	26 (+V)	At (Inee)
AS (Free)	24 (Ground)	TV3 (Free)
AT (Mee)	22 (+V)	X2 (Free)
Via (use)	20 (Ground)	Tra (Free)
Ar (mee)	18 (+V)	Nu (mee)
AD (mee)	16 (Ground)	The (mee)
(rice)	14 (+V)	40 (Free)
La (Press)	12 (Ground)	55 /Eree
T	10 (+V)	SE /Enab
(nee)	8 (Ground)	54 (Free)
(ince)	6 (+V)	53 (Eree)
	4 (Ground)	52 (Free)
(trees	2 (Free)	The hirde

a) Subdomain Settings

b) Boundary Settings

c) Electric Potential and Field Arrows

Integrate Displacement Current Density for Input Current

IU =-(up(Jdy_smppn))*z	Current into upper plate	
ID =-(down(Jdy_smppn))*z	Current into down plate	
Admittance is: Y=1/Z	Z = Impedance	
Y =I/V=abs(ID)+abs(IU)	Magnitude	For V = 1
G= real(ID)-real(IU)	Real Part	
B= imag(ID)-imag(IU)	Imaginary Part	
Capacitance is: Β/ω		
C= (imag(ID)-imag(IU))/(2*pi*fr	eq)	

COMSOL Fluid, Shell and Stack Subdomain Settings and Boundary Settings for Pressure Acoustics (acpr) application

a) Subdomain Settings Blue - Water fluid two wavelength at 3 kHz Yellow - PML one wavelength Mesh 1

Mesh 16312 Triangular Element

Sound Pressure Level

COMSOL SPL is given by,

UIU VII | I IEJ /

 p_{ref} = 1 µPa for Water

2 in denominator indicates pressure is a peak value, Therefore Voltage Potential on transducer should be a peak value V = 1.414

The more common form of SPL in terms of rms pressure is given by,

-10 · + 111w | + 10j ·

Transmit voltage response for 2-D model is given by,

TVR = SPL-10log10(1/h)-10log10(1/r) **dB ref 1µPa/Vrms at 1m**

h is the transducer height in the z-direction *r* is the radial distance pressure point

Transmit Voltage Response Measured (____) and COMSOL Modeled (0000)

28-Aug-96 11:53:04

Transmit Voltage Response Stave Side

Beam Patterns in Omni Mode Measured and COMSOL Modeled at 3 kHz, 5 kHz and 9.6 kHz

Directional Dogbone Flextensional Sonar Transducer

FEA Shell and Stack Modes

Displacements and PZT Stack Electric Fields

Voltage Drive Configuration

Complex Drive Voltage $\begin{cases} E_a = (P_d + P_o) / P_d = 1 + R \\ E_b = (P_d - P_o) / P_d = 1 - R \end{cases}$ where $R = P_o / P_d$ $E_{a}/E_{b} = 1 + R/1 - R$

All Pressures Normalized to Dipole Pressure Field Pd

COMSOL Modeled

a) Pressure and b) SPL Surface Plots in the Omnidirectional, Dipole and Directional Modes at 3 kHz

b) SPL Surface Plots

FEA Molded Beam Pattern at 3 kHz

Omni Mode

Dipole Mode

Directional Mode

Same results obtained from 1kHz – 6 kHz, with Front/Back > 50 dB over Band

Summary

- □ The Directional Dogbone Flextensional Transducer
 - Generates Cardioid Directional Beam Patterns
 - » Front to Back ratio > 50 dB
 - » That can be steered Left or Right
 - Reduces Ambiguity
 - Reduced reverberation
 - Improve detection rates
 - Broadband > Octave
 - Reduced Size, Weight and Cost