

Simulation of Flow, Thermal and Mechanical Effects in COMSOL for Enhanced Geothermal Systems

Danijela Sijacic & Peter Fokker

TNO / Geological Survey of The Netherlands

Enhanced Geothermal Systems

- Enhanced Geothermal Systems: technology where a hot (>100°) but relatively impermeable (κ < 10⁻¹⁶ m²) rock at depth (often > 2-3 km) is hydraulically stimulated.
- Shear failure on pre-existing fracture network, giving increased permeability; enabling flow between wells to exchange heat

- Mechanisms of shear failure (Majer et al., 2007)
 - ▶ Pore pressure ↑ Effective normal stress ↓
 - ➤ Temperature ↓ Effective normal stress ↓
 - Chemical reaction may reduce coefficient of friction

Mohr-Coulomb

$$T=S_0 + \mu(\sigma_n-p_f)$$

Full Coupling of Flow, Mechanics and Heat Transport

The Model

- Inspired by field case (Soultsous-Forêts)
- 3D rock mass of 100x100x100
 m³
- Fracture zone with dip of 60°
- Impermeable matrix of granite
- Fracture zone
 - 20 m thickness
 - Initial permeability of 500 mD
- Vertical injection well
- Injection of cold water (20°C)

2D Model

Sensitivities using 2D cross section

Coupled Processes and COMSOL Multiphysics

- **Flow** in porous medium
 - Darcy's law
 - Continuum equation
 - Fracture Permeability according to the cubic law (Poisseuille flow)
 - Porosity change due to volumetric strain
 - Viscosity change due to temperature

Mechanics

- Rock matrix: Linear Elastic
- Fracture zone: Mohr-Coulomb Model
- Poro-elastic stresses
- Thermo-elastic stresses

Heat Transfer

- Conduction & Diffusion: Heat equation
- Convection: Darcy velocity field

▼ Equation

Show equation assuming:

Study Poro-elastic, Time Dependent

$$-\nabla \cdot \sigma = \mathbf{F}_{V}, \ \sigma = \mathbf{s}$$

$$\mathbf{s} - \mathbf{S}_0 = \mathbf{\underline{C}} : (\epsilon - \epsilon_0 - \epsilon_{\mathsf{inel}}) - (\mathsf{trace}(\mathbf{\underline{C}} : (\epsilon - \epsilon_0 - \epsilon_{\mathsf{inel}}))/3 + p_w) \mathbf{I} + \alpha_{\mathsf{B}} p \mathbf{f} \mathbf{I}$$

$$\epsilon = \frac{1}{2} [(\nabla \mathbf{u2})^{\mathsf{T}} + \nabla \mathbf{u2}]$$

Modelled as initial stress

$$\rho \mathbf{S} \frac{\partial p \mathbf{f}}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{Q}_{\mathsf{m}} \mathbf{I} - \rho \alpha_{\mathsf{B}} \frac{\partial \mathbf{e}_{\mathsf{vol}}}{\partial t}$$

$$\mathbf{u} = -\frac{\kappa}{\mu} \nabla p \mathbf{f}$$

$$S = \epsilon_{p} \chi_{f} + \frac{(\alpha_{B} - \epsilon_{p})(1 - \alpha_{B})}{K}$$

Has to be modelled in Darcy Law as a source term

Model Inputs

storage has to be calulated

Sensitivity to meshing

Temperature case 1 after 55 hours of injection.

- $T_{matrix} = 300^{\circ} C$ $T_{fluid} = 20^{\circ} C$

-10

Effective plastic strain

100 110 120 ▼ -6.6346×10⁻³

TNO innovation for life

Thermal Effects

Neglecting thermal effects is not justified

- different behaviour of permeability
- shear strain changes sign

Thermal Effects

Effect of stopping injection

Well pressure (actual injection scheme)

- > Pressure in solid
 - Cooling reduces pressure
 - Continued effect

Temperature effects after shutdown

Temperature

Von Mises stress

No TE effects

Plastic Strain:

Evolution during injection time and after shutin

Induced seismicity

- M = G dA
- Shear displacement = shear strain * H
- Failing area: 3rd dimension is missing estimation of H=10 or 20m

Effective plastic strain > 0
Failing patch
Shear strain

Strain Energy

Injection of warmer water vs. injection of cold water – comparison with a field case (Iceland)

Injectivity_cold/ Injectivity_warm=1.45 Modeling result

Injectivity_cold/ Injectivity_warm=5.85 at well NH-09 Injectivity_cold/ Injectivity_warm=3.3 at well NH-12 In Iceland geothermal field

Uncertain parameter: friction angle in Mohr-Coulomb shear failure

Uniform vs. 9 domains vs. random

Conclusion & Discussion

- COMSOL is suitable as tool for sensitivity analysis strong in coupled modelling; issues remain with stability for 3D models
- Thermal stresses can instantly change permeability and plastic strain, changing injectivity and induced seismicity potential
- Qualitative but not yet quantitative agreement of temperature effect on injectivity for Iceland geothermal field
- Identified factors relevant for the induced seismicity calibration still required

Future Work

- Shear weakening
- Healing
- Heterogeneity
- Influence of geometry on injectivity and seismicity
- Probabilistic modelling with a proxy model