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ICE PROJECT: OBJECTIVES

@ Development of an efficient air-conditioning and heating

system based on Magneto-Caloric heat pump

® New system architecture to fulfill the thermal comfort

and energy requirements of a FEV

" MagnetoCaloricl
Refrigeration fol

. Efficient Electric

Air-Conditioning

Heating power: 5 kW

Cooling power: 3 kW
Temperature span:-7°C,+50°C
COP =3




MAGNETOCALORIC HEAT PUMP

@ Based on Magneto-Caloric Effect (MCE)

® MCE: temperature changing of a magnheto-caloric material

exposed to a changing magnetic field

@ Active Magnetic Regenerator (AMR)

Cold Sink

CHEx
(Cold Heat
Exchanger)




MAGNETOCALORIC HEAT PUMP

@ Active Magnetic Regenerator cycle(AMR cycle)

(1

Adiabatic magnetization

(2)
Isofield cooling
(Maximal magnetic field)

3)

Adiabatic demagnetization

(4)
Isofield heating
(Minimal magnetic field)




MODELING OF MAGNETOCAILLORIC
HEAT PUMP

® Model of fluid flow and heat transfer in Minichannel

ps ;ks )CP,S)TS /m3) aTs/anz 0

B
A pro by ke, Cog Iy kiV Ty =k VT
X
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Mass conservation equation V-u=0
Momentum equation pr(i- VU = —Vp + up Vi
Energy equation for fluid domain prp,f(ﬁ . VTf) = kaZTf
Energy equation for solid domain k V2T, +Qy =0
Equation for heat transfer coefficient h = —Twall

Twau — Tf




MODELING OF MAGNETOCAILLORIC
HEAT PUMP

@ Physical model of AMR cycle

Adiabatic walls :
ps ks, Cps(uoH,Ts), Ts Ovuc(W/m®) ksVTs =0

Solid regenerator

U prour ks, Cor, Ty

Lamr <]
>

T, .
Energy equation for fluid PrCo s <6_tf + (- V)Tf> =V (kfVTr) — Qrr

oT. : :
Energy equation for solid PpsCy s a—: =V (k,VT,) + Quac + Orr
Equation of MCE t Iwce = psC (aT“d dH | M dTS)
quation o source term Quce = psCp g on ar T T, dt
Equation of heat transfer between Orr = hﬁ(Ts — Tf)]nt s

fluid and solid as source term




MODELING OF MAGNETOCAILLORIC
HEAT PUMP

@ Interpolation of Cp and ATad of Gadolinium

Variation of Cp with temperature, for Variation of ATad with temperature, for
O<pOH<2T O<pOH<2T

ATad, (T, oH (t +dt))—ATade (T, uH (t))

QMCE = PadCPed (T’/‘OH (t)) dt




RESULTS AND CONCLUSION
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RESULTS AND CONCLUSION

Contributions

® A different and acurate approach to
calculate de QMCE

® An accurate determination of heat transfer

coefficient




ENCOUNTERED PROBLEMS

@ Implementation of Q¢

® Requirement of high quantity of memory

FUTURE WORK

@ Analyse the surface rugosity influence on the fluid flow and

heat transfer in microchannels.

@ Analyse the influence of the dimensions of the system (plate

thickness, channel height) on the heat transfer quantities.
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® THANKYQOU!
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