

Nusselt, Rayleigh, Grashof, and Prandtl: Direct calculation of a user-defined convective heat flux

Freddy Hansen

We use COMSOL for a variety of simulations

In today's presentation we'll look at an electronic device in direct contact with the human body

- Electronics generate heat, which can damage human tissue, e.g., the skin
- Damage occurs at 44°C and higher temperatures [1-5]
- Higher temperatures lead to damage faster
 - at 48°C damage occurs in 15 minutes
 - time until damage roughly halved with every 1°C rise
- Regulatory limits and standards may apply, e.g., IEC 60601-1
- In the presentation we will look at long durations
 - goal is to design a device that does not exceed IEC 60601-1 limit (43°C)
 - thermal simulation in COMSOL (steady state study)

^{1.} S. Hudack and P. D. McMaster, J. Exp. Med., 55, 431-439 (1932)

^{2.} P. D. McMaster and S. Hudack, J. Exp. Med., 56, 239-253 (1932)

^{3.} P. D. McMaster and S. Hudack, J. Exp. Med., 60, 479-501 (1934)

^{4.} E. H. Leach, R. A. Peters, and R. J. Rossiter, Q. J. Exp. Physiol., 32, 67-86 (1943-44)

^{5.} F. C. Henriques, A. R. Moritz, Am. J. Pathol., 23, 530-549 (1947)

The simulation must model the device, the human body, and boundary conditions

The human body is simulated using both thermal conduction and a blood perfusion model

	thickness [mm]	metabolic rate [W/m³]	perfusion ω [s ⁻¹]	thermal conductivity [W/m·K]	density [g/cm³]	heat capacity [J/kg·K]
skin	2	1300	0.0018	0.47	1.085	3680
fat	30	250	0.00043	0.16	0.85	2300
muscle	25	500	0.0005	0.42	1.085	3768
viscera	net ^[1]	net ^[2]	average ^[3]	0.53 ^[4]	1.0 ^[4]	3697 ^[4]
blood	n/a	Q_b	n/a	n/a	1.0 ^[5]	4200 ^[5]

Blood does not generate heat metabolically, but transports heat and is therefore a local heat source or heat sink:

$$Q_b = \rho_b C_{p,b} \omega (T_b - T)$$

$$T_b = T_{core} = 36.7 \, ^{\circ}\text{C}$$

References:

Values from "A Mathematical Model of the Human Thermal System," E.D. Yildrim (2005) except:

[1] viscera thickness to make torso width 267 mm total, based on 50-percentile male abdomen dimension in "The Measure of Men & Women," A.R. Tilley, p. 12 (2002) [2] viscera metabolic rate to make body metabolism 80 W total, based on Fig. 21-8 in "New Human Physiology," G. Zubieta-Calleja and P.-E. Paulev (2004)

- [3] average of skin/fat/muscle values
- [4] organ viscera values from Yildrim
- [5] "Simulation and Calculation of Magnetic and Thermal Fields of Human using Numerical Method and Robust Soft wares," K.M. Takami and H. Hekmat (2008)

The human body is simulated using both thermal conduction and a blood perfusion model

	thickness [mm]	metabolic rate [W/m³]	perfusion ω [s ⁻¹]	thermal conductivity [W/m·K]	density [g/cm³]	heat capacity [J/kg·K]
skin	2	1300	0.0018	0.47	1.085	3680
fat	30	250	0.00043	0.16	0.85	2300
muscle	25	500	0.0005	0.42	1.085	3768
viscera	net ^[1]	net ^[2]	average ^[3]	0.53 ^[4]	1.0 ^[4]	3697 ^[4]
blood	n/a	Q_b	n/a	n/a	1.0 ^[5]	4200 ^[5]

Blood does not generate heat metabolically, but transports heat and is therefore a local heat source or heat sink:

$$Q_b = \rho_b C_{p,b} \omega (T_b - T)$$

$$T_b = T_{core} = 36.7 \, ^{\circ}\text{C}$$

There are ≈6 different boundary conditions that must be correctly specified

The heat transfer coefficient can be calculated from a series of dimensionless numbers

$$h_C = \frac{\mathrm{Nu} \cdot k}{L}$$

 $Nu = C \cdot Ra^n$

 $Ra = Gr \cdot Pr$

$$Gr = \frac{gL^3}{\eta^2} \left(\frac{T_p}{T_a} - 1 \right)$$

$$Pr = \frac{\mu C_p}{k}$$

	L	С	n	T_p	T_a	valid for		
module sides	y_m	0.59	0.25	$\overline{T_{side}}$	T_{skin}	10 ⁴ <ra<10<sup>9</ra<10<sup>		
module top	$x_m/2$	0.54	0.25	$\overline{T_{top}}$	T_{skin}	10 ⁴ <ra<10<sup>7</ra<10<sup>		
module bottom	$x_m/2$	0.27	0.25	$\overline{T_{bottom}}$	T_{skin}	10 ⁵ <ra<10<sup>11</ra<10<sup>		
clothing- to-ambient	y_m	0.59	0.25	$\overline{T_{face}}$	$T_{ambient}$	10 ⁴ <ra<10<sup>9</ra<10<sup>		

where

 $k = k(T_a)$ = heat conductivity of air $\eta = \eta(T_a)$ = kinetic viscosity of air $\mu = \mu(T_a)$ = dynamic viscosity of air $C_p = C_p(T_a)$ = heat capacity of air g = acceleration of gravity 9.81 m/s²

JFH 2015-03-25

Direct calculation of the heat transfer coefficient can be done in COMSOL (step 1)

Direct calculation of the heat transfer coefficient can be done in COMSOL (step 2)

W/(m²-K)

hcAmb

...but if we entered the h_c variable name (hcAmbCalc) here, we would get an error message, because we need a value here to calculate hcAmbCalc in the first place...

Direct calculation of the heat transfer coefficient can be done in COMSOL (step 3)

...so we have to add another physics node, a global ODE, that makes the input h_c and the output h_c the same.

We find that one possible design allows ≈1.75 W of heat

damage integral

Electronics hea	0.75				
out of which:					
Boost converte	rs [%]	60			
Circuit board [9	6]	40			
Ambient tempe	erature [°C]	26.0			
Patient exertio	n level	At rest			
%VO ₂ max		13			
Patient core te	mperature [°C]	36.7			
Patient skin ter	mperature [°C]	31.8			
Clothing thickn	Clothing thickness [mm]				
Clothing fit	Tight				
Battery heat	eratures [°C]				
	Human skin				
[W]		Module surface			
0.0	36.6	39.7			
0.5	41.4				
1.0	39.4	43.0			
1.5	40.8	45.8			
2.0	42.2	49.5			
2.5	43.7	53.0			
3.0	56.5				

43

Max allowed

60601-1

Simulation can be used to identify the hottest surface (IEC 60601-1 limit)

Choice of internal materials can help in distributing heat to a larger area

Performance in different ambient conditions can also be explored

	26°C ambient Phatery(1)-1 Surface Temperature (degC) 2 1.5 1.5 1 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5			40°C ambient Platter(3)-1. Surface. Temperature (degc)			device between human body and mattress Petropy(2)-03. Surface Temperature (degC) 473 493 494 494 495		
	0.04 0.09 0.09 0.09 0.09			0.04			0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03		
Q_{batt}	Skin	Module surface	Battery	Skin	Module surface	Battery	Skin	Module surface	Battery
[W]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
0.0	37.0	37.4	37.5	39.5	42.5	42.5	39.8	43.0	43.0
0.5	38.4	40.1	40.2	40.8	45.1	45.1	41.8	47.1	47.1
1.0	39.6	42.8	42.8	42.0	47.6	47.7	43.8	51.2	51.2
1.5	40.9	45.3	45.3	43.2	50.1	50.2	45.8	55.3	55.4
2.0	42.1	47.8	47.8	44.4	52.6	52.6	47.8	59.4	59.4
2.5	43.3	50.3	50.3	45.6	55.0	55.0	49.8	63.4	63.5
3.0	44.5	52.7	52.7	46.8	57.3	57.4	51.8	67.4	67.5

Conclusions

