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Nusselt, Rayleigh, Grashof, and Prandtl:

Direct calculation of a user-defined 

convective heat flux

Freddy Hansen
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We use COMSOL for a variety of simulations

CFD simulation of a Ventricular Assist Device (VAD)

Current distribution in a
hermetic header

Resonant magnetic energy transfer

Structural integrity test Electromagnetic simulation of a VAD

Just a few examples…

JFH 2015-09-29
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In today’s presentation we’ll look at an electronic 

device in direct contact with the human body

• Electronics generate heat, which can damage human tissue, e.g., the skin

• Damage occurs at 44°C and higher temperatures [1-5]

• Higher temperatures lead to damage faster
• at 48°C damage occurs in 15 minutes
• time until damage roughly halved with every 1°C rise

• Regulatory limits and standards may apply, e.g., IEC 60601-1

• In the presentation we will look at long durations
• goal is to design a device that does not exceed IEC 60601-1 limit (43°C)
• thermal simulation in COMSOL (steady state study)

1. S. Hudack and P. D. McMaster, J. Exp. Med., 55, 431-439 (1932)
2. P. D. McMaster and S. Hudack, J. Exp. Med., 56, 239-253 (1932)
3. P. D. McMaster and S. Hudack, J. Exp. Med., 60, 479-501 (1934)
4. E. H. Leach, R. A. Peters, and R. J. Rossiter, Q. J. Exp. Physiol., 32, 67-86 (1943-44)
5. F. C. Henriques, A. R. Moritz, Am. J. Pathol., 23, 530-549 (1947)
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The simulation must model the device,

the human body, and boundary conditions

JFH 2015-03-24

skin

section of 
human body

device

clothing layer
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The human body is simulated using both thermal

conduction and a blood perfusion model

JFH 2015-03-24

References:
Values from “A Mathematical Model of the Human 
Thermal System,” E.D. Yildrim (2005)
except:
[1] viscera thickness to make torso width 267 mm total, 
based on 50-percentile male abdomen dimension in 
“The Measure of Men & Women,” A.R. Tilley, p. 12 (2002)
[2] viscera metabolic rate to make body metabolism
80 W total, based on Fig. 21-8 in “New Human 
Physiology,” G. Zubieta-Calleja and P.-E. Paulev (2004)
[3] average of skin/fat/muscle values
[4] organ viscera values from Yildrim
[5] “Simulation and Calculation of Magnetic and Thermal 
Fields of Human using Numerical Method and Robust 
Soft wares,” K.M. Takami and H. Hekmat (2008)

thickness

[mm]

metabolic
rate

[W/m3]

perfusion
ω

[s-1]

thermal 
conductivity

[W/m∙K]

density

[g/cm3]

heat 
capacity
[J/kg∙K]

skin 2 1300 0.0018 0.47 1.085 3680

fat 30 250 0.00043 0.16 0.85 2300

muscle 25 500 0.0005 0.42 1.085 3768

viscera net[1] net[2] average[3] 0.53[4] 1.0[4] 3697[4]

blood n/a Qb n/a n/a 1.0[5] 4200[5]

𝑄𝑏 = 𝜌𝑏𝐶𝑝,𝑏𝜔 𝑇𝑏 − 𝑇

Blood does not generate heat 
metabolically, but transports 
heat and is therefore a local heat 
source or heat sink:

𝑇𝑏 = 𝑇𝑐𝑜𝑟𝑒 = 36.7 °C
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There are ≈6 different boundary conditions that

must be correctly specified

JFH 2015-03-25

Boundary of human body section:
• thermal insulation
• correctness confirmed by simulation result: 

effect of module does not extend to boundary

thermal 
insulation

thermal 
insulation

Skin:
• heat flux required to dissipate this body 

section’s volumetric share of total metabolic 
heat (80 W)

• calculated without module in place

heat flux

Clothes-to-ambient:
• convective heat transfer
• transfer into T = Tambient
• heat transfer coefficient is calculated(!), not 

prescribed, assuming no wind

convective 
heat transfer

Module sides:
• convective heat transfer
• assume clothes are worn; transfer into T = Tskin
• heat transfer coefficient is calculated(!), not 

prescribed

convective 
heat transfer

clothes-to-clothes is 
modeled as thermal 

insulation

bottom: thermal insulation
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The heat transfer coefficient can be calculated 

from a series of dimensionless numbers

JFH 2015-03-25

ℎ𝐶 =
Nu ∙ 𝑘

𝐿

Nu = 𝐶 ∙ Ra𝑛

Ra = Gr ∙ Pr

Gr =
𝑔𝐿3

𝜂2
𝑇𝑝
𝑇𝑎

− 1

Pr =
𝜇𝐶𝑝
𝑘

L C n Tp Ta valid for

module 
sides

ym 0.59 0.25 𝑇𝑠𝑖𝑑𝑒 𝑇𝑠𝑘𝑖𝑛 104<Ra<109

module 
top

xm/2 0.54 0.25 𝑇𝑡𝑜𝑝 𝑇𝑠𝑘𝑖𝑛 104<Ra<107

module 
bottom

xm/2 0.27 0.25 𝑇𝑏𝑜𝑡𝑡𝑜𝑚 𝑇𝑠𝑘𝑖𝑛 105<Ra<1011

clothing-
to-ambient

ym 0.59 0.25 𝑇𝑓𝑎𝑐𝑒 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 104<Ra<109

top

where
k = k(Ta) = heat conductivity of air
η = η(Ta) = kinetic viscosity of air
μ = μ(Ta) = dynamic viscosity of air
Cp = Cp(Ta) = heat capacity of air
g = acceleration of gravity 9.81 m/s2
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Direct calculation of the heat transfer coefficient

can be done in COMSOL (step 1)

JFH 2015-03-25

Easy enough to 
calculate the heat 
transfer coefficients hc
after the simulation 
has finished…
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Direct calculation of the heat transfer coefficient

can be done in COMSOL (step 2)

JFH 2015-03-25

…but if we entered 
the hc variable name 
(hcAmbCalc) here, we 
would get an error 
message, because we 
need a value here to 
calculate hcAmbCalc
in the first place…
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Direct calculation of the heat transfer coefficient

can be done in COMSOL (step 3)

JFH 2015-03-25

…so we have to add 
another physics node, 
a global ODE, that 
makes the input hc
and the output hc the 
same.
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We find that one possible design

allows ≈1.75 W of heat

Electronics heat [W] 0.75

out of which:

Boost converters [%] 60

Circuit board [%] 40

Ambient temperature [°C] 26.0

Patient exertion level At rest

%VO2 max 13

Patient core temperature [°C] 36.7

Patient skin temperature [°C] 31.8

Clothing thickness [mm] 3.0

Clothing fit Tight

Battery heat Max temperatures [°C]

[W]
Human skin

Module surface

0.0 36.6 39.7

0.5 37.9 41.4

1.0 39.4 43.0

1.5 40.8 45.8

2.0 42.2 49.5

2.5 43.7 53.0

3.0 45.0 56.5

Max allowed 
60601-1 43 damage integral

JFH 2015-09-11
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Simulation can be used to identify the

hottest surface (IEC 60601-1 limit)

JFH 2015-04-02

hottest touchable surface
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Choice of internal materials can help in distributing 

heat to a larger area

JFH 2015-04-03

good material choice here avoids trapping heat

trapped heat

black arrows are heat flux vectors

heat insulator here helps push heat sideways
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Performance in different ambient conditions

can also be explored

JFH 2015-04-23

Qbatt

[W]

Skin

[°C]

Module 
surface

[°C]

Battery

[°C]

Skin

[°C]

Module 
surface

[°C]

Battery

[°C]

Skin

[°C]

Module 
surface

[°C]

Battery

[°C]

0.0 37.0 37.4 37.5 39.5 42.5 42.5 39.8 43.0 43.0

0.5 38.4 40.1 40.2 40.8 45.1 45.1 41.8 47.1 47.1

1.0 39.6 42.8 42.8 42.0 47.6 47.7 43.8 51.2 51.2

1.5 40.9 45.3 45.3 43.2 50.1 50.2 45.8 55.3 55.4

2.0 42.1 47.8 47.8 44.4 52.6 52.6 47.8 59.4 59.4

2.5 43.3 50.3 50.3 45.6 55.0 55.0 49.8 63.4 63.5

3.0 44.5 52.7 52.7 46.8 57.3 57.4 51.8 67.4 67.5

26°C ambient 40°C ambient
device between

human body and mattress
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Conclusions

JFH 2015-09-29

• We were able to establish a heat 
budget for the device that 
satisfies temperature limits
in IEC 60601-1

• We simulated an electronic device in 
contact with human skin

• Simulation included the device, the human 
body, and surroundings including clothes


