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Introduction : Slag2PCC 

Process
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Bubble reactor

CO2 is dispersed in an aqueous solution that

contains dissolved calcium ( Ca
2+

ions),

that produce PCC (precipitate calcium carbonate

CaCO3) [Mattila and Zevenhoven, 2014]



Project features   

 Modelling efforts focus on the bubble reactor 

 Improvement of PCC particle quality and efficiency of 

CO2 use after dissolution

 Goal: CO2  gas outlet minimization

 Improvement and limit testing of CFD commercial 

codes:

• Eulerian stacked tower of fluid

• One way coupling

• Lagrangian bubble tracking

• Variable bubble size and mass

• Bubble swarm dissolution
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Eulerian fluid environment 

 Fluid dynamics ruled by 

impeller motion
– Eulerian flow lines depend on 

geometry constraints and impeller 

characteristics (Turbulence 

modelling)

– Bubble disturbance effect on fluid 

dynamics negligible

– Periodic Boundary conditions

– Impeller shaft velocity outside the 

rotating domain is modelled as a 

moving wall with velocity Ω x R, 

with “Ω” the rotational speed and 

“R” the radial coordinates of the 
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The system consist of a section of

a vertical pipe of diameter [D1=

127 mm] with an internal cylindrical

rotating domain that contains the

impeller geometry with varying

diameter of 50- 75% of the outer

pipe.



 Frozen rotor 

simulation
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Velocity field: stream lines (Mixing pattern)

Ω =100 rpm L=50 cm 

Eulerian fluid environment 

Numerical errors arise causing 

the results to be unstable

 Time dependent solution 



Mass transfer for a single bubble 
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A link between mass transfer

boundary layer and bubble force

is established through the mass

time derivative of the dissolving

bubble



Mass transfer for a single 

bubble 
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R=0.625 mm No Chemical reaction

R=0.625 mm First order Chemical reaction

R= 1.25 mm No Chemical reaction

R= 1.25 mm First order Chemical reaction

R= 2.5 mm No Chemical reaction

R= 2.5 mm First order Chemical reaction

R=2.5 mm

R=1.25 mm

R=0.625 mm

Under ideal conditions a rising  CO2 bubble of initial radius 

1.25mm would dissolve after approx. 1,5 m displacement in a 

bubble tower



Bubble swarm Lagrangian

tracking
 Bubble Tracking

– Single and multiple bubble 

interaction 

– Mass transfer boundary layer

– Local internal bubble pressure 

related to the local fluid pressure 

drop.

– Ideal gas bubbles
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Bubble swarm Lagrangian

tracking
 Bubble Dissolution

– Bubble shape drag coefficient tracking 

– Chemical reactions effects negligible: 

maximum values of Hatta number 

≤0.0386

– Mass dissolution
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A total mass loss of approx.

11% is found in the first

tower section for the

bubbles even if the bubbles

only experience a 0.2 mm

change in diameter.



Stacked tower of fluid

 A bubble tower slice of 

height ‘‘L” is modeled
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 Flow field solution for a 

slice is copied and 

stacked to form a 

column  

 Influence of neighboring 

impellers is studied

Isosurfaces

Velocity magnitude

Ω =100 rpm L=50 cm 

General 

Extrusion 

Operator

1 2 3



Bubble dissolution in tower of 

fluid
 Bubble Tracking*
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*Spherical shape deviation effects taking into account according to  Roghair et 

al.  2011 

Section 2

Section 3

Section 1
A total bubble mass dissolution of approx.

38% is found in 3 tower sections of 50 cm.



Bubble trajectories color 

by bubble diameter [mm]

Bubble dissolution in tower of 

fluid
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Conclusions

 The mass diffusion profile seems realistic, bubbles become 

smaller and decrease their Reynolds number

 First order chemical reaction has a minor effect on the total 

mass transfer

 Deviation from spherical shape tracking is necessary for 

more complicated trajectories 

 The final goal is to fill the gaps between the numerical and 

experimental approaches, concentration profile modelling 

with a simple time-dependent exponential profile 

 Design a solid hybrid model for bubble reactors 
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Thank You
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