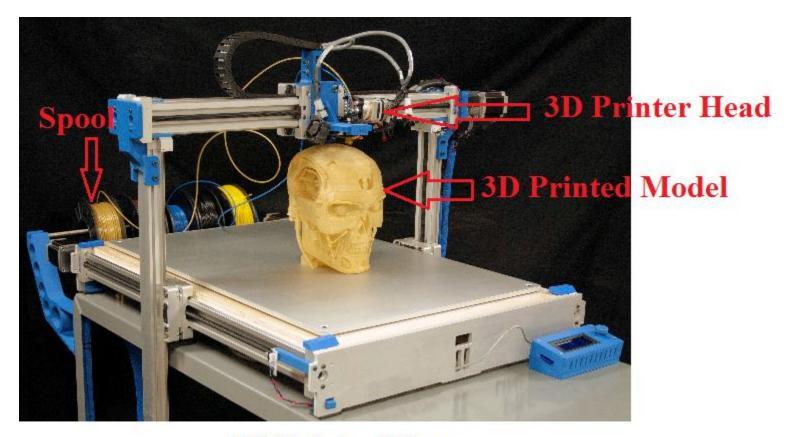
Glass Transition of ABS in 3D Printing

Miftahur Rahman*1, N. R. Schott² and Lakshmi Kanta Sadhu³

¹Professor, North South University, Dhaka, Bangladesh. ²Professor Emeritus, Department of Plastics Engineering, UMASS Lowell, USA. ³IRays Teknology Ltd., Dhaka, Bangladesh.

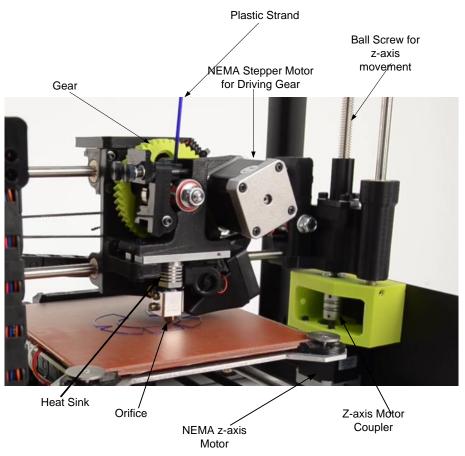
*Corresponding author: miftahur.rahman@northsouth.edu, irays.teknology.ltd@gmail.com



Overview

- Technical Overview
 - 3D Printer
 - 3D Printer Head
- Numerical Modeling with COMSOL Multiphysics 5.2
 - Modeling Assumptions
 - Material Properties
 - COMSOL Simulation Parameters
- Results & Analysis
- Conclusions & Future Applications

3D Printer


3D Printer View

Closer View of 3D Printer Head

Lulzbot 3D Printer Head

Numerical Modeling of 3D Printer Head with COMSOL Multiphysics 5.2

Modeling Assumptions:

- 1. 2D axisymmetric heat transfer model
- 2. Molten ABS flows continuously through a narrow nozzle
- To obtain accurate results, the melt flow fields in combination with the heat transfer and glass (secondary) transition are considered.
- 4. The model includes the transition from glassy solid to rubbery melt, both in terms of sensible heat along with other physical properties.
- 5. The model assumes a steady state and continuous process.

Table-II Thermal parameters of ABS used in the COMSOL simulation.

Description	Data Used
Processing temperature	378[K]
Temperature transition zone half width	75[K]
Heat of glass transition	207[kJ/kg]
Heat capacity at constant pressure, glassy state	1200 [J/(kg.K]
Heat capacity at constant pressure, rubbery state	1797.6
Ambient temperature	300 [K]
Melt inlet temperature	378 [K]
Casting speed	1.0 [mm/s]
Heat transfer coefficient, ABS	2000 [W/(m^2.K]
Heat transfer coefficient, air	$10 [W/(m^2.K)]$
Surface emissivity	0.95

Table-III Thermal parameters of ABS used in the COMSOL simulation.

Glassy ABS	Value	Unit
Thermal conductivity	03	W/(mK)
Density	1050	kg/m^3
Ratio of specific heats	1	1
TO 11 A TOC		
Rubbery ABS	Value	Unit
Thermal conductivity	Value 02	Unit W/(mK)
-		

3D Plot Shows the Velocity Magnitude Obtained by Revolution of 2D Axisymmetric Data Set

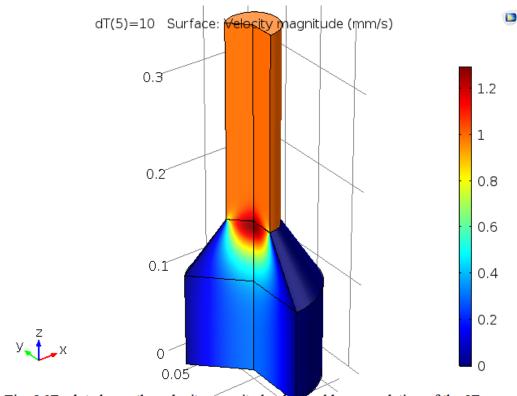


Fig. 5 3D plot shows the velocity magnitude obtained by a revolution of the 2D axisymmetric data set.

2D Surface Velocity Magnitude (mm/s) as Streamlines of Total Heat Flux

Animation Heat Flux

Animation Inkjet

Glass Transition Change in ABS

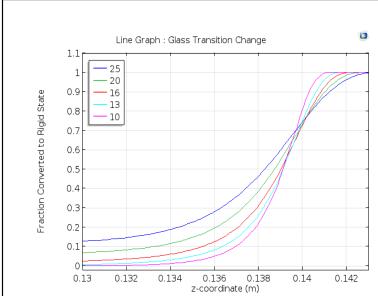


Fig. 7 The fraction of liquid rubbery state along the centerline for all values of ΔT . For smaller values of ΔT , the glass transition is steeper.

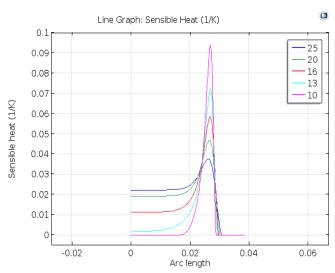


Fig. 8 As ΔT gets smaller, in particular $\Delta T=10$ K, the curve is not entirely smooth. As a result, to model with reduced ΔT increments one must to increase the mesh resolution.

Results & Discussions

The **glass-transition temperature** T_g of a material characterizes the range of temperatures over which the glass transition occurs.

The **glass-liquid transition** or **glass transition** for short is the reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a molten or rubber like state, as the temperature is increased.

However, it is always lower than the melting temperature, $T_{\rm m}$, of the crystalline state of the material, if one exists.

Hard plastics like ABS, PS and PMMA (polymethyl-methacrylate) are used well below their glass transition temperatures, that is in their glassy state. Their $T_{\rm g}$ values are well above room temperature, both at around 100-105 °C (212- °F).

Despite the massive change in the physical properties of a material through its glass transition, the transition is not itself a phase transition of any kind.

However, the question of whether some phase transition *underlies* the glass transition is a matter of continuing research.

Conclusions

- ➤ Modeling and simulation of 3D printer head using COMSOL software tools may predict the die design that gives the best properties for the 3D model.
- ➤ Die design may control the heat flux to give the fastest cure rate to make the model strong in least amount of time.
- The effects of fillers and their influence on cure rate and end use properties can be predicted.
- ➤Intelligent 3D head is being implemented by IRays Teknology Ltd.

Questions?

Thank you !!!

